Hashtags and followers
نویسندگان
چکیده
منابع مشابه
Processing and Normalizing Hashtags
We present ongoing work in linguistic processing of hashtags in Twitter text, with the goal of supplying normalized hashtag content to be used in more complex natural language processing (NLP) tasks. Hashtags represent collectively shared topic designators with considerable surface variation that can hamper semantic interpretation. Our normalization scripts allow for the lexical consolidation a...
متن کاملInterdependent Followers Prefer Avoidant Leaders: Followers’ Cultural Orientation Moderates Leaders’ Avoidance Relationships with Followers’ Work Outcomes
Citation: Kafetsios KG and Gruda D (2018) Interdependent Followers Prefer Avoidant Leaders: Followers’ Cultural Orientation Moderates Leaders’ Avoidance Relationships with Followers’ Work Outcomes. Front. Commun. 3:9. doi: 10.3389/fcomm.2018.00009 interdependent Followers Prefer avoidant leaders: Followers’ cultural Orientation Moderates leaders’ avoidance relationships with Followers’ Work Out...
متن کاملSuggesting Hashtags on Twitter
As micro-blogging sites, like Twitter, continue to grow in popularity, we are presented with the problem of how to effectively categorize and search for posts. Looking specifically at Twitter, we see that users may categorize their posts using hashtags, and any word or phrase may be used as the category. Attempting to search for tweets about Facebook, a user would need to try many different has...
متن کاملGénération Automatique de HashTags
Les hashtags sont des mots-clés que les utilisateurs de réseaux sociaux choisissent de mettre en avant dans leurs messages. Ils ont été popularisés sur le réseau social Twitter, qui a permis à ses utilisateurs de sélectionner des HashTags à suivre et d’afficher l’ensemble des messages contenant un HashTag suivi. Ils sont aujourd’hui utilisés sur les principaux réseaux sociaux, tels que Facebook...
متن کاملLeaders, Followers, and Community Detection
Communities in social networks or graphs are sets of well-connected, overlapping vertices. The effectiveness of a community detection algorithm is determined by accuracy in finding the ground-truth communities and ability to scale with the size of the data. In this work, we provide three contributions. First, we show that a popular measure of accuracy known as the F1 score, which is between 0 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Social Network Analysis and Mining
سال: 2016
ISSN: 1869-5450,1869-5469
DOI: 10.1007/s13278-016-0320-6